Geometría Plana/Conceptos Básicos/Curvas
En la matemática (inicialmente estudiado en la geometría elemental y, en forma más rigurosa, en la geometría diferencial), la curva (o línea curva) es una línea continua de una dimensión, que varía de dirección paulatinamente. Ejemplos sencillos de curvas cerradas simples son la elipse o la circunferencia o el óvalo, el cicloide; ejemplos de curvas abiertas, la parábola, la hipérbola y la catenaria y una infinidad de curvas estudiadas en la geometría analítica plana.
Historia y definiciones
[editar]Año | Acontecimiento |
---|---|
300 a. C. | Euclides define las secciones cónicas |
250 a. C. | Arquímedes investiga las curvas espirales. |
225 a. C.. | Apolonio de Perge publica Cónicas. |
1704 | Isaac Newton clasifica las curvas cúbicas. |
1890 | Giuseppe Peano aplicando la definición de Jordán, demuestra que un cuadrado relleno también es una curva. |
Década de 1920 | Pável Urysón y Karl Menger definen el concepto de curva a partir de la topología. |
Camille Jordan (1838-1922) propuso una teoría sobre las curvas basada en la definición de una curva en términos de puntos variables (ver teorema de la curva de Jordan). En geometría, una curva en el n-espacio euclidiano es un conjunto que es la imagen de un intervalo Ι abierto bajo una aplicación continua , i.e:
donde suele decirse que () es una representación paramétrica o parametrización de .
Curva, en el plano o en el espacio tridimensional, es la imagen de un camino γ, que se considera con derivada continua a trozos en el intervalo de definición [2] .
Curva plana
[editar]Una curva plana es aquella que reside en un solo plano y puede ser abierta o cerrada. La representación gráfica de una función real de una variable real es una curva plana.[3]
- ↑ Tony Crilly (2011). 50 cosas que hay que saber sobre matemáticas. Ed. Ariel. ISBN 978-987-1496-09-9.
- ↑ Christopher Clapham. Diccionarios Oxford -Complutense Matemáticas. ISBN 84-89784-56-6
- ↑ Plantilla:MathWorld