Matemáticas/Ecuaciones/Ecuación Racional
Función racional de grado 2: |
Función racional de grado 3: |
En matemáticas, una función racional de una variable es una función que puede ser expresada de la forma:
donde P y Q son polinomios y x una variable, siendo Q distinto del polinomio nulo. Esta definición puede extenderse a un número finito pero arbitrario de variables, usando polinomios de varias variables.
La palabra "racional" hace referencia a que la función racional es una razón o cociente (de dos polinomios); los coeficientes de los polinomios pueden ser números racionales o no.
Las funciones racionales tienen diversas aplicaciones en el campo del análisis numérico para interpolar o aproximar los resultados de otras funciones más complejas, ya que son computacionalmente simples de calcular como los polinomios, pero permiten expresar una mayor variedad de comportamientos.
Ejemplos
[editar]si el denominador es distinto de cero, y si ad ≠ bc, la curva correspondiente es una hipérbola equilátera.[1]
Propiedades
[editar]- Toda función racional es de clase en un dominio que no incluya las raíces del polinomio Q(x).
- Todas las funciones racionales en las que el grado de Q sea mayor o igual que el grado de P tienen asíntotas (verticales, horizontales u oblicuas).
- Todas las funciones racionales cuyos coeficientes pertenecen a un cuerpo forman un cuerpo que incluye al cuerpo base como subcuerpo. El cuerpo de funciones racionales forma un subcuerpo del cuerpo de series de potencias formales.
Integración de funciones racionales
[editar]Dada una función racional:
Si el denominador es un polinómico mónico con k raíces diferentes, entonces admitirá la siguiente factorización en términos de polinomio irreducibles:
Si entonces la función racional puede escribirse como combinación lineal de fracciones racionales de las formas:
Por lo que la integral de la función es una combinación lineal de funciones de la forma :
Obsérvese que lo anterior implica que las funciones racionales constituyen un cuerpo algebraico que es cerrado bajo la derivación, pero no bajo la integración.
- ↑ Pedro Pérez Carreras. Cálculo infinitesimal. Universidad Politécnica de Valencia. http://books.google.com/books?id=XGrILRo8GmsC&lpg=PA58&dq=funci%C3%B3n%20homogr%C3%A1fica&hl=es&pg=PA58#v=onepage&q=funci%C3%B3n%20homogr%C3%A1fica&f=false.