Matemáticas/Matrices/Teoremas/Teorema 13
Teorema 13: Combinación lineal
[editar]El desarrollo de una matriz, el determinante, no varía cuando se suman a los elementos de una línea, los que corresponden a otra paralela a la considerada multiplicados previamente por un número cualquiera c1, mas los elementos correspondientes de otra línea, siempre paralela a la considerada, multiplicados por otro número c2, etc ( o sea agregándole una combinación lineal de líneas paralelas) Este teorema permite simplificar los determinantes, reduciendo a cero varios elementos de una misma línea mediante sumas o restas convenientes, o sea sustituyendo una fila por una combinación lineal de las restantes. Cada elemento que se logra anular de este modo evita el cálculo de un menor complementario, al desarrollar el determinante por los elementos de una línea. Si se logra anular así todos los elementos de una línea excepto uno, el producto de éste por su adjuto es igual al determinante total. Si se logra anular a todos los elementos, entonces el valor del determinante es cero.