Matemáticas/Números/Racionales/Introducción
En sentido amplio, se llama número racional a todo número que puede representarse como el cociente de dos enteros con denominador distinto de cero (una fracción común). El término racional alude a ración o parte de un todo, y no al pensamiento o actitud racional.
Definimos un número racional como un decimal finito o infinito periódico (por ejemplo, el número decimal finito 0,75 es la representación decimal del número racional 3/4. El número decimal infinito periódico 0,333... es la representación decimal del número racional 1/3). El número racional permite resolver ecuaciones del tipo ax = b, cuando a y b son números enteros (con «a» distinto de cero).
El conjunto de los números racionales se denota por por "Quotient" que significa «cociente» en varios idiomas europeos. Este conjunto de números incluye a los números enteros y es un subconjunto de los números reales. Una pregunta interesante (y muy difícil de resolver) es saber si algunos números más o menos familiares para nosotros como , \'o son números racionales (la respuesta en los tres casos es NO).
Las fracciones equivalentes entre sí –número racional– son una clase de equivalencia, resultado de la aplicación de una relación de equivalencia al conjunto de números fraccionarios.