I n t e g r a l e s i n m e d i t a s : {\displaystyle {\mathfrak {Integrales\;inmeditas:}}}
∫ x n d x = x ( n + 1 ) ( n + 1 ) + C (Para todo n ≠ − 1 ) {\displaystyle \int x^{n}\,dx={\frac {x^{(n+1)}}{(n+1)}}+C\quad {\mbox{(Para todo }}n\neq -1)}
∫ e x d x = e x + C {\displaystyle \int e^{x}\,dx=e^{x}+C}
∫ b x = b x log b {\displaystyle \int b^{x}={\frac {b^{x}}{\log b}}}
∫ b x d x = b x log x + C {\displaystyle \int b^{x}\,dx={\frac {b^{x}}{\log x}}+C}
I n t e g r a l e s d e f u n c i o n e s t r i g o n o m e ´ t r i c a s : {\displaystyle \mathrm {Integrales\;de\;funciones\;trigonom{\acute {e}}tricas:} \,\!}
I n t e g r a l e s d e f u n c i o n e s h i p e r b o ´ l i c a s : {\displaystyle \mathrm {Integrales\;de\;funciones\;hiperb{\acute {o}}licas:} \,\!}
Hortaliza Verdura Cereal Legumbre Origen animal