Ábaco Oriental/Métodos Tradicionales/Ejemplos de División Tradicional
En este capítulo se ofrecen una serie de ejemplos de división tradicional (TD) usando la disposición tradicional de la división (TDA) en la forma de tablas de procedimiento. También hay disponible una versión gráfica de estos ejercicios (como ficheros PDF externos) ilustrando su ejecución en diversos formatos de ábacos, pero de momento sólo están disponibles en inglés.
Divisores de un dígito
[editar]Como ya se ha mencionado, el número 123456789 se ha utilizado para demostrar la multiplicación y la división en muchos libros antiguos sobre el ábaco; algunos, como el Panzhu Suanfa[1], comienzan con la multiplicación tradicional (vea el capítulo correspondiente en este libro) de dicho número por un dígito y posteriormente usan la división para devolver el ábaco a su estado original; otros, como el Jinkoki [2], lo hacen al revés, comenzando con la división y terminando el ejercicio con la multiplicación. Nosotros veremos aquí la división de 123456789 por los ocho divisores de un dígito 2, 3,...9.
El número 123456789 es divisible entre 3, 9 y 13717421, por lo que las divisiones entre 2, 3, 4, 5, 6, 8 y 9 tienen resultados con expansión decimal finita (2 y 5 son divisores de la base decimal o radix 10). Sólo la división por 7 conduce a un resultado con un número infinito de decimales, por lo que aquí lo interumpiremos y daremos un resto.
Desafortunadamente, este ejercicio no usa todas las reglas de división, pero es un buen comienzo y permite practicar sin una hoja de ejercicios.
123456789 dividido por 9
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Divisor 9 en M |
123456789 9 | Columna A: Usar regla 1/9>1+1 |
133456789 9 | Cambiar 1 en A en 1 y sumar 1 a B |
136456789 9 | Columna B: Usar regla 3/9>3+3 Cambiar 3 en B en 3 y sumar 3 a C |
136T56789 9 | Columna C: Usar regla 6/9>6+6 Cambiar 6 en C en 6 y sumar 6 a D |
136056789 9 | (Igual que arriba) |
137156789 9 | Revisar al alza |
137166789 9 | Columna D: Usar regla 1/9>1+1 Cambiar 1 en D en 1 y sumar 1 a E |
137162789 9 | Columna E: Usar regla 6/9>6+6 Cambiar 6 en E en 6 y sumar 6 a F |
137173789 9 | Revisar al alza |
137173089 9 | Columna F: Usar regla 3/9>3+3 Cambiar 3 en F en 3 y sumar 3 a G |
137174189 9 | Revisar al alza |
137174199 9 | Columna G: Usar regla 1/9>1+1 Cambiar 1 en G en 1 y sumar 1 a H |
137174209 9 | Revisar al alza |
137174210 9 | Revisar al alza. Done! 123456789/9=13717421 |
123456789 dividido por 8
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
123456789 8 | Dividendo en A-I, divisor 8 en M |
143456789 8 | Columna A: regla 1/8>1+2, Cambiar 1 en A en 1, sumar 2 a B |
153456789 8 | Columna B: regla 4/8>5+0, Cambiar 4 en B en 5, sumar 0 a C |
153T56789 8 | Columna C: regla 3/8>3+6, Cambiar 3 en C en 3, sumar 6 a D |
153056789 8 | (igual que arriba) |
154256789 8 | Revisar al alza C, sumar 1 a C, restar 8 de D |
154296789 8 | Columna D: regla 2/8>2+4, Cambiar 2 en D en 2, sumar 4 a E |
154316789 8 | Revisar al alza D, sumar 1 a D, restar 8 de E |
154318789 8 | Columna E: regla 1/8>1+2, Cambiar 1 en E en 1, sumar 2 a F |
154320789 8 | Revisar al alza E, sumar 1 a E, restar 8 de F |
154320849 8 | Columna G: regla 7/8>8+6, Cambiar 7 en G en 8, sumar 6 a H |
154320969 8 | Revisar al alza G, sumar 1 a G, restar 8 de H |
154320973 8 | Columna H: regla 6/8>7+4, Cambiar 6 en H en 7, sumar 4 a I |
154320985 8 | Revisar al alza H, sumar 1 a H, restar 8 de I |
1543209862 8 | Columna I: regla 5/8>6+2, Cambiar 5 en I en 6, sumar 2 a J |
15432098624 8 | Columna J: regla 2/8>2+4, Cambiar 2 en J en 2, sumar 4 a K |
15432098625 8 | Columna K: regla 4/8>5+0, Cambiar 4 en K en 5, sumar 0 a L.
¡Hecho! 123456789/9=15432098.625 |
123456789 dividido por 7
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
123456789 7 | Dividendo en A-I, divisor 7 en M |
153456789 7 | Columna A: regla 1/7>1+3, Cambiar 1 en A en 1, sumar 3 a B |
174456789 7 | Columna B: regla 5/7>7+1, Cambiar 5 en B en 7, sumar 1 a C |
175956789 7 | Columna C: regla 4/7>5+5, Cambiar 4 en C en 5, sumar 5 a D |
176256789 7 | Revisar al alza C, sumar 1 a C, restar 7 de D |
176256789 7 | Columna D: regla 2/7>2+6, Cambiar 2 en D en 2, sumar 6 a E |
176346789 7 | Revisar al alza D, sumar 1 a D, restar 7 de E |
176351789 7 | Columna E: regla 4/7>5+5, Cambiar 4 en E en 5, sumar 5 a F |
176364789 7 | Revisar al alza E, sumar 1 a E, restar 7 de F |
176365289 7 | Columna F: regla 4/7>5+5, Cambiar 4 en F en 5, sumar 5 a G |
176366589 7 | Revisar al alza F, sumar 1 a F, restar 7 de G |
176366799 7 | Columna G: regla 5/7>7+1, Cambiar 5 en G en 7, sumar 1 a H |
176366829 7 | Revisar al alza G, sumar 1 a G, restar 7 de H |
176366825 7 | Columna H: regla 2/7>2+6, Cambiar 2 en H en 2, sumar 6 a I |
176366841 7 | Revisar al alza H dos veces, sumar 2 a H, restar 14 de I. ¡Paramos aquí! 123456789/9=17636684, resto = 1 |
123456789 dividido por 6
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo en A-I, divisor 6 en M |
123456789 6 | |
163456789 6 | Columna A: regla 1/6>1+4, Cambiar 1 en A en 1, sumar 4 a B |
203456789 6 | Revisar al alza A, sumar 1 a A, restar 6 de B |
205456789 6 | Columna C: regla 3/6>5+0, Cambiar 3 en C en 5, sumar 0 a D |
205696789 6 | Columna D: regla 4/6>6+4, Cambiar 4 en D en 6, sumar 4 a E |
205736789 6 | Revisar al alza D, sumar 1 a D, restar 6 de E |
205756789 6 | Columna E: regla 3/6>5+0, Cambiar 3 en E en 5, sumar 0 a F |
205760789 6 | Revisar al alza E, sumar 1 a E, restar 6 de F |
205761189 6 | Revisar al alza F, sumar 1 a F, restar 6 de G |
205761129 6 | Columna G: regla 1/6>1+4, Cambiar 1 en G en 1, sumar 4 a H |
205761309 6 | Revisar al alza G twice, sumar 2 a G, restar 12 de H |
205761313 6 | Revisar al alza H, sumar 1 a H, restar 6 de I |
205761315 6 | Columna I: regla 3/6>5+0, Cambiar 3 en I en 5, sumar 0 a J. ¡Hecho! 123456789/6=20576131.5 |
123456789 dividido por 5
[editar]Abacus | Comment |
---|---|
ABCDEFGHIJKLM | |
123456789 5 | Dividendo en A-I, divisor 5 en M |
223456789 5 | Columna A: regla 1/5>2+0, Cambiar 1 en A en 2, sumar 0 a B |
243456789 5 | Columna B: regla 2/5>4+0, Cambiar 2 en B en 4, sumar 0 a C |
246456789 5 | Columna C: regla 3/5>6+0, Cambiar 3 en C en 6, sumar 0 a D |
246856789 5 | Columna D: regla 4/5>8+0, Cambiar 4 en D en 8, sumar 0 a E |
246906789 5 | Revisar al alza D, sumar 1 a D, restar 5 de E |
246911789 5 | Revisar al alza E, sumar 1 a E, restar 5 de F |
246912789 5 | Columna F: regla 1/5>2+0, Cambiar 1 en F en 2, sumar 0 a G |
246913289 5 | Revisar al alza F, sumar 1 a F, restar 5 de G |
246913489 5 | Columna G: regla 2/5>4+0, Cambiar 2 en G en 4, sumar 0 a H |
246913539 5 | Revisar al alza G, sumar 1 a G, restar 5 de H |
246913569 5 | Columna H: regla 3/5>6+0, Cambiar 3 en H en 6, sumar 0 a I |
246913574 5 | Revisar al alza H, sumar 1 a H, restar 5 de I |
246913578 5 | Columna I: regla 4/5>8+0, Cambiar 4 en I en 8, sumar 0 a J. ¡Hecho! 123456789/5=24691357.8 |
123456789 dividido por 4
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo en A-I, divisor 4 en M |
123456789 4 | |
243456789 4 | Columna A: regla 1/4>2+2, Cambiar 1 en A en 2, sumar 2 a B |
303456789 4 | Revisar al alza A, sumar 1 a A, restar 4 de B |
307656789 4 | Columna C: regla 3/4>7+2, Cambiar 3 en C en 7, sumar 2 a D |
308256789 4 | Revisar al alza C, sumar 1 a C, restar 4 de D |
308556789 4 | Columna D: regla 2/4>5+0, Cambiar 2 en D en 5, sumar 0 a E |
308616789 4 | Revisar al alza D, sumar 1 a D, restar 4 de E |
308628789 4 | Columna E: regla 1/4>2+2, Cambiar 1 en E en 2, sumar 2 a F |
308640789 4 | Revisar al alza E dos veces, sumar 2 a E, restar 8 de F |
308641389 4 | Revisar al alza F, sumar 1 a F, restar 4 de G |
3086417T9 4 | Columna G: regla 3/4>7+2, Cambiar 3 en G en 7, sumar 2 a H |
308641929 4 | Revisar al alza G dos veces, sumar 2 a G, restar 8 de H |
308641959 4 | Columna H: regla 2/4>5+0, Cambiar 2 en H en 5, sumar 0 a I |
308641971 4 | Revisar al alza H dos veces, sumar 2 a H, restar 8 de I |
3086419722 4 | Columna I: regla 1/4>2+2, Cambiar 1 en I en 2, sumar 2 a J |
3086419725 4 | Columna J: regla 2/4>5+0, Cambiar 2 en J en 5, sumar 0 a K. ¡Hecho! 123456789/4=30864197.25 |
123456789 dividido por 3
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo en A-I, divisor 3 en M |
123456789 3 | |
333456789 3 | Columna A: regla 1/3>3+1, Cambiar 1 en A a 3, sumar 1 a B |
403456789 3 | Revisar al alza A, sumar 1 a A, restar 3 de B |
410456789 3 | Revisar al alza B, sumar 1 a B, restar 3 de C |
411156789 3 | Revisar al alza C, sumar 1 a C, restar 3 de D |
411366789 3 | Columna D: regla 1/3>3+1, Cambiar 1 en D a 3, sumar 1 a E |
411506789 3 | Revisar al alza D dos veces, sumar 2 a D, restar 6 de E |
411520789 3 | Revisar al alza E dos veces, sumar 2 a E, restar 6 de F |
411522189 3 | Revisar al alza F dos veces, sumar 2 a F, restar 6 de G |
411522399 3 | Columna G: regla 1/3>3+1, Cambiar 1 en G a 3, sumar 1 a H |
411522609 3 | Revisar al alza G tres veces, sumar 3 a G, restar 9 de H |
411522630 3 | Revisar al alza H tres veces, sumar 3 a H, restar 9 de I. ¡Hecho! 123456789/3=41152263 |
123456789 divided by 2
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo en A-I, divisor 2 en M |
123456789 2 | |
523456789 2 | Columna A: regla 1/2>5+0, Cambiar 1 en A a 5, sumar 0 a B |
603456789 2 | Revisar al alza A, sumar 1 a A, restar 2 de B |
611456789 2 | Revisar al alza B, sumar 1 a B, restar 2 de C |
615456789 2 | Columna C: regla 1/2>5+0, Cambiar 1 en C a 5, sumar 0 a D |
617056789 2 | Revisar al alza C dos veces, sumar 2 a C, restar 4 de D |
617216789 2 | Revisar al alza D dos veces, sumar 2 a D, restar 4 de E |
617256789 2 | Columna E: regla 1/2>5+0, Cambiar 1 en E a 5, sumar 0 a F |
617280789 2 | Revisar al alza E tres veces, sumar 3 a E, restar 6 de F |
617283189 2 | Revisar al alza F tres veces, sumar 3 a F, restar 6 de G |
617283589 2 | Columna G: regla 1/2>5+0, Cambiar 1 en G a 5, sumar 0 a H |
617283909 2 | Revisar al alza G four times, sumar 4 a G, restar 8 de H |
617283941 2 | Revisar al alza H four times, sumar 4 a H, restar 8 de I |
617283945 2 | Columna I: regla 1/2>5+0, Cambiar 1 en I a 5, sumar 0 a J. ¡Hecho! 123456789/2=61728394.5 |
Divisores de varios dígitos (división larga)
[editar]División de 998001 por 999
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo en A-F, divisor in K-M |
998001 999 | |
988001 999 | Regla: 9/9>9+9 |
-8 | Restar 81 de BC |
9T8001 999 | |
-1 | |
9T7001 999 | |
-8 | Restar 81 de CD |
999001 999 | |
-1 | |
998901 999 | |
997901 999 | Regla: 9/9>9+9 |
-8 | Restar 81 de CD |
999901 999 | |
-1 | |
999801 999 | |
-8 | Restar 81 de DE |
998T01 999 | |
-1 | |
998991 999 | |
998791 999 | Regla: 8/9>8+8 |
-7 | Restar 72 de DE |
998T91 999 | |
-2 | |
998T71 999 | |
-7 | Restar 72 de EF |
9989T1 999 | |
-2 | |
998999 999 | |
-9 | Revisar al alza (de izquierda a derecha para ahorrar desplazamientos) |
998990 999 | |
-9 | |
998900 999 | |
-9 | |
998000 999 | |
+1 | |
999000 999 | ¡Hecho! 998001/999 = 999 |
-
Con un ábaco 5+2
-
Con un ábaco 5+1
-
Con un ábaco 5+3
División de 888122 por 989
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo 888122 en A-F, divisor 989 en K-M |
888122 989 | |
868122 989 | A: Regla: 8/9>8+8 cambiar 8 en A a 8 y sumar 8 a B |
804122 989 | Restar A×L=8×8=64 de BC |
896922 989 | Restar A×M=8×9=72 de CD |
895922 989 | B: Regla: 9/9>9+9 cambiar 9 en B a 9 y sumar 9 a C |
898722 989 | Restar B×L=9×8=72 de CD |
897912 989 | Restar B×M=9×9=81 de DE |
897612 989 | C: Regla: 7/9>7+7 cambiar 7 en B a 7 y sumar 7 a D |
897052 989 | Restar C×L=7×8=56 de DE |
897989 989 | Restar C×M=7×9=63 de EF |
898000 989 | Revisar al alza: sumar 1 a C y restar 989 de DEF. Resto nulo 888122/989 = 898. ¡Hecho! |
División de 888122 por 898
[editar]Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | Dividendo 888122 en A-F, divisor 898 en K-M |
888122 898 | |
968122 898 | A: Regla: 8/8>9+8, cambiar 8 en A a 9 y sumar 8 a B |
987122 898 | Restar A×L=9×9=81 de BC |
979922 898 | Restar A×M=9×8=72 de CD |
985922 898 | B: Regla: 7/8>8+6, cambiar 7 en B a 8 y sumar 6 a C |
988722 898 | Restar B×L=8×9=72 de CD |
988082 898 | Restar B×M=8×8=64 de DE |
989882 898 | C: Regla: 8/8>9+8, cambiar 8 en C a 9 y sumar 8 a D |
989072 898 | Restar C×L=9×9=81 de DE |
989000 898 | Restar C×M=9×8=72 de EF. Remainder en DEF is zero, so that 888122/898 = 989. ¡Hecho! |
División de 412 por 896
[editar]En este caso extendemos la división hasta el final del ábaco, utilizando para los últimos dígitos la técnica presentada en el capítulo sobre Operaciones Abreviadas.
Ábaco | Comentario |
---|---|
ABCDEFGHIJKLM | |
896 412 | Esta vez el divisor va a la izquierda y el dividendo a la derecha. |
896 512 | Columna E: regla 4/8>5+0, cambiar 4 en E a 5, sumar 0 a F |
896 492 | no se puede restar E×B=5×9=45 de FG, revisar a la baja E: restar 1 de E, sumar 8 a F |
896 456 | restar E×B=4×9=36 de FG |
896 4536 | restar E×C=4×6=24 de GH |
896 4656 | Columna F: regla 5/8>6+2, cambiar 5 en F a 6, sumar 2 a G |
896 4602 | restar F×B=6×9=54 de GH |
896 4582 | no se puede restar F×C=6×6=36 de HI, revisar a la baja F: restar 1 de F, sumar 8 a G |
896 4591 | y sumar 9 a H para devolver el exceso 89 restardo de GH |
896 4588 | Continuar normalmente y restar F×C=3×6=30 de HI |
896 45916 | Columna G: regla 8/8>9+8, cambiar 8 en G a 9, sumar 8 a H |
896 45979 | restar G×B=9×9=81 de HI |
896 459736 | restar G×C=9×6=54 de IJ |
896 459896 | Columna H: regla 7/8>8+6, cambiar 7 en H a 8, sumar 6 a I |
896 459824 | restar H×B=8×9=72 de IJ |
896 4598192 | restar H×C=8×6=48 de JK |
896 4598112 | Columna I: regla 1/8>1+2, cambiar 1 en I a 1, sumar 2 a J |
896 4598103 | restar I×B=1×9=9 de JK |
896 45981024 | restar I×C=1×6=6 de KL |
896 45982128 | revisar al alza I: sumar 1 a I, restar 896 de JKL |
896 45982148 | Columna J: regla 1/8>1+2, cambiar 1 en J a 1, sumar 2 a K |
896 45982139 | restar J×B=1×9=9 de KL |
896 459821384 | restar J×C=1×6=6 de LM |
896 459821344 | Columna K: regla 3/8>3+6, cambiar 3 en K a 3, sumar 6 a L |
896 459821317 | restar K×B=3×9=27 de LM |
896 459821315 | restar K×C=3×6=18 de M …a partir de ahora esto es aproximado |
896 459821425 | revisar al alza K: sumar 1 a K, restar 896 de LM… |
896 459821429 | Columna L: regla 2/8>2+4, cambiar 2 en L a 2, sumar 4 a M |
896 459821427 | restar L×B=2×9=18 de M… |
896 459821428 | Columna M: regla 7/8>8+6, cambiar 7 en M a 8, sumar 4 a … ¡Hecho! 412/896=0.459821428 |
Referencias
[editar]- ↑ Xú Xīnlǔ (徐心魯) (1993) [1573] (en Chin). Pánzhū Suànfǎ (盤珠算法). Zhōngguó kēxué jìshù diǎnjí tōng huì (中國科學技術典籍通彙).
- ↑ Yoshida, Mitsuyoshi (吉田光由) (1634) (en Japonés). Jinkoki (塵劫記). https://dl.ndl.go.jp/info:ndljp/pid/3508170/7.
Recursos externos
[editar]Puede practicar la división tradicional en línea con Soroban Trainer usando este fichero: kijoho-1digit.sbk que debe descargar a su computadora y luego enviarlo a Soroban Trainer (es un archivo de texto que puede inspeccionar con cualquier editor de texto y que puede descargar de manera segura a su computadora).
- Sobre Soroban Trainer
-
- Puede ejecutarlo directamente desde GitHub en su navegador
- o puede descargarlo a su computadora desde su repositorio en GitHub.