Ir al contenido

Ábaco Oriental/Métodos Tradicionales/Particularidades Tradicionales de la Adición y la Sustracción

De Wikilibros, la colección de libros de texto de contenido libre.

Introducción

[editar]

Con cualquier tipo de ábaco, la suma se simula reuniendo los conjuntos de contadores que representan los dos sumandos, mientras que la resta se simula eliminando del conjunto de contadores que representan el minuendo un conjunto de contadores que representan el sustraendo. La suma y la resta son las dos únicas operaciones posibles en cualquier tipo de ábaco. Todo lo demás tiene que descomponerse en una secuencia de suma y resta.

Apenas hay diferencia entre sumar y restar con un ábaco moderno o uno tradicional, si el lector ya sabe realizar estas dos operaciones con fluidez con un ábaco moderno, podrá hacer lo mismo con uno tradicional. Los únicos dos puntos adicionales a considerar son:

  • el uso de la quinta cuenta inferior para simplificar las operaciones.
  • la operación inversa: combinar las direcciones de trabajo hacia la derecha y hacia la izquierda para evitar desplazamientos de la mano.

de los cuales el primero es, con mucho, el más importante.


Quinta cuenta inferior

[editar]
Páginas iniciales del Pánzhū Suànfǎ 盤珠算法 (1573)

La quinta cuenta inferior se puede utilizar en operaciones de suma y resta al igual que sus compañeras. Su uso se demuestra en algunos libros antiguos como: Métodos computacionales con las cuentas en una bandeja (Pánzhū Suànfǎ 盤珠算法) by Xú Xīnlǔ 徐心魯 (1573)[1], pero con el tiempo dejó de aparecer en los manuales. Esto no debe sorprender demasiado, no se trata de una técnica esencial sino más bien de un truco para aligerar o hacer más cómodas las operaciones con el ábaco y su uso se puede demostrar directamente con el ábaco y transmitirse de forma oral más fácilmente que plasmándolo en un libro. No olvidemos que los antiguos libros chino-japoneses sobre el ábaco eran realmente concisos; practicamente recordatorios o formularios, ya que la enseñanza oral era considerada fundamental.

Operación inversa (de derecha a izquierda)

[editar]

Algunos libros antiguos sobre el ábaco, por ejemplo, "Pista Matemática" (Shùxué Tōngguǐ 數學通軌) de Kē Shàngqiān (柯尚遷) (1578)[2], enseñan la suma usando una dirección de operación alterna con la obvia intención de ahorrar movimientos de la mano. Si el lector ya ha estudiado el ábaco moderno, sabe por qué es preferible operar de izquierda a derecha y esto no es solo una cuestión exclusiva del ábaco; en el siglo XIX, el conocido astrónomo canadiense-estadounidense Simon Newcomb, una reconocida computadora humana, recomendaba sumar y restar de izquierda a derecha en cálculo escrito en la introducción de sus tablas de logaritmos[3] si se quería llegar a ser eficiente en el cálculo manual.

Por tanto, la alternancia de operación debe considerarse como una cuestión secundaria. Si se menciona aquí es porque, a pesar de su limitada utilidad, es un ejercicio muy interesante que puede resultar bastante difícil al principio para quien ya está habituado a trabajar de izquierda a derecha, quizás un pequeño desafío que puede llevar al lector a interesantes reflexiones sobre el orden de movimiento de los dedos; en particular, sobre si los acarreos deben realizarse "antes" o "después".

En el capítulo dedicado a las variantes del ejercicio 123456789 se propone propone su práctica diaria como una forma de perfeccionar nuestra "comprensión de las cuentas".


Referencias

[editar]
  1. Xú Xīnlǔ (徐心魯) (1993) [1573] (en Chino). Pánzhū Suànfǎ (盤珠算法). Zhōngguó kēxué jìshù diǎnjí tōng huì (中國科學技術典籍通彙). 
  2. Kē Shàngqiān (柯尚遷) (1993) [1578] (en Chino). Shùxué Tōngguǐ (數學通軌). Zhōngguó kēxué jìshù diǎnjí tōng huì (中國科學技術典籍通彙). 
  3. Newcomb, Simon (c1882). Logarithmic and other mathematical tables with examples of their use and hints on the art of computation. New York: Henry Holt and Company. https://archive.org/details/logarithmicother00newcrich/page/n5/mode/2up.